SAULT COLLEGE OF APPLIED ARTS & TECHNOLOGY

SAULT STE. MARIE, ONTARIO

COURSE OUTLINE

Course Title:	COMMUNICATION SYSTEMS II
Code No.:	ELN 245-5
Program:	ELECTRONIC ENGINEERING TECHNOLOGY
Semester:	FOUR
Date:	JANUARY 1986
Author:	PETER SZILAGYI

New:_____ Revision: ___X

APPROVED:

Chairperson Chargetto

Date

Communications Systems II

ELN-245-5

Goals:

A second course in analog electronic communications at a technology level. Phase, Locked Loops and Frequency Synthesizers are studied and the generation and reception of FM monoural and stereo signals.

In the second part of the course, a most representative communication system, the TV system is studied, monochrome and colour TV and computer monitors as well.

Communications Systems I, Electronics I and II are prerequisites to this course.

Method of Assessment

4 written tests Lab reports and practical test

TextbooksBasic Television and Video Systems by Bernard GrobModern Electronic Communication by Miller

Topic Description

Hours

Block 1 : FM and Stereo Transmitters and Receivers 1.1 FM Noise Analysis 1.2 Direct FM Generation 1.3 Indirect FM Generation 1.4 Stereo FM Broadcasting 1.5 FM Receivers 1.6 FM Detectors 1.7 FM Stereo Decoders Test #1	2 2 1 2 2 1 1
Total Block 1	
Block 2 : Phase Locked Loop And Frequency Syntheses 2.1 PLL 2.2 Frequency Synthesis 2.3 PLL And Synthesis Applications Test #2	3 3 3 1
Total Block 2	
Block 3 : Television Principles 3.1 Applications of Television 3.2 The Television Picture 3.3 Television Cameras	1 1 2

Block	3 Continued	
	Picture Tubes and Adjustments	2
	Scanning and Synchronising	2
	The Video-Complex Signal	2
3.7	Colour TV Circuits and Signals	3
	Test #3	1
Tota	1 Block 3	14
IULA	I BIOCK 5	14
Block	4 : Television Transmission and Reception	
	Video Test Signals	1
	TV Transmission	2
	TV Receivers and Monitors	4
	Cable Television	1
4.5	TV Test Instruments and Servicing	2
	Test #4	1
Tota	1 Block 4	
IULA	I BLOCK 4	11

- 3 -

General Objectives: After the successfull completion of ELN245 the student will have gained a knowledge of some representative communications systems and hands-on experience in adjusting, testing and trouble shooting of FM radio receivers and colour television receivers.

Specific Objectives: When the student has successfully completes this course, he shoud be knowledgeble in the following topics:

Block 1: FM and Stereo Transmitters and Receivers

- 1.1 FM Noise Analysis
 - noise suppression of AM and FM compared
 - frequency deviation caused by noise
 - S/N ratio and phase shift
 - capture effect
 - preemphasis
 - Dolby Dynamic Preemphasis
- 1.2 Direct FM Generation
 - varactor diode method
 - reactance modulator
 - voltage controlled oscillator
 - weakness of the direct method
 - Crosby modulator

1.3 Indirect FM Generation

- FM via PM
- the Armstrong modulator
- wide band deviation
- phasorial analysis of the indirect FM transmitter
- frequency stability of FM transmitters

1.4 Stereo FM

- the composite modulating signal
- compatability of monaural and stereo systems
- frequency division multiplexing of the L and R signals
- components of a stereo FM generator
- 1 KHZ pilot carrier

1.5 FM Receivers

- block diagram
- RF amplifiers
- 10.7MHz IF amplifiers
- limiter and AGC
- sensitivity of FM receivers
- 1.6 FM Detectors
 - FM discriminator characteristic
 - slope detector
 - Foster Seely discriminator
 - phase relations in the discriminator

- 1.6 Continued
 - ratio detector
 - phase relations in the ratio detector
- 1.7 FM Stereo Decoders
 - block diagram of a mono stereo receiver
 - L + R low pass filter
 - L R band pass filter
 - pilot carrier filter
 - matrix and deemphasis network
 - stereo signal processing
 - composite stereo and SCA signal
 - SCA decoder

Block 2: Phase Locked Loop and Frequency Synthesis

- 2.1 The Phase Locked Loop
 - the components of the PLL: phase detector, VCO and low pass filter
 - PLL capture and lock
 - waveforms in a PLL
 - linear integrated circuit PLL NE560 and NE565
- 2.1 Frequency Synthesis
 - basic frequency synthesizer
 - programmable division
 - two modulus prescalers
 - limitations of the maximum synthesized frequency
 - synthesizer techniques in order to increase maximum frequency (XTAL oscillator and mixer frequency multiplier, programmable divider and prescaler)
- 2.3 PLL and Synthesiser Applications
 - PLL FM demodulator
 - tracking filter
 - PLL SCA decoder
 - PLL FM transmitter
 - citizen's band synthesizer

Block 3 : Television Principles

- 3.1 Applications of Television
 - video, audio, TV and radio signals
 - block diagram of TV broadcasting
 - TV broadcast signals
 - closed circuit television
- 3.2 The Television Picture
 - picture elements
 - horizontal and vertical scanning

- 3.2 Continued
 - video signal
 - motion pictures
 - frame and field frequencies
 - scanning frequencies
 - synchronization
 - blanking
 - the 3.58 MHz colour signal
 - picture qualities
 - the 6 MHZ TV broadcast channel
 - standards of transmission
- 3.3 Television Cameras
 - basic operation of a TV camera
 - types of camera tubes
 - the VIDICON, PLUMBICON and SATICON
 - camera adjustments
 - optical colour separation
 - gamma correction
 - single-tube colour cameras
- 3.4 Picture Tubes and Adjustments
 - picture tube construction
 - anode high voltage
 - screen phosphors
 - electron gun
 - electrostatic focus
 - magnetic deflection
 - tricolour picture tubes (DELTA, IN LINE, TRINITRON)
 - shadow mask
 - methods of phosphor masking
 - beam landing adjustments
 - degaussing colour picture tubes
 - convergence adjustments
 - static convergence
 - dynamic convergence
 - pincushion
 - video signal drive
 - gray space tracking
 - setup adjustments

3.5 Scanning and Synchronizing

- sawtooth waveform for linear scanning
- interlaced scanning
- odd line interlacing
- flicker
- raster distortions
- sync pulses
- scanning, sync and blanking frequencies
- 3.6 The Composite Video Signal
 - construction of the composite video signal

3.6 Continued

- IRE scale of video signal amplitudes
- horizontal blanking time
- vertical blanking time
- picture information and video signal frequencies
- maximum number of picture elements
- DC component of the video signal
- gamma and contrast in the picture
- colour information in the video signal
- 3.7 Colour TV Circuits And Signals
 - red, green and blue video signals
 - colour addition
 - definitions of colour TV terms
 - encoding the picture information
 - chrominance modulation
 - decoding the picture information
 - the luminance "Y" signal
 - types of colour video signals
 - colour sync burst
 - HUE phase angles
 - colour plexed composite video signal
 - desaturated colours with white
 - colour resolution and bandwidth
 - colour subcarrier frequency
 - colour TV systems

Block 4: Television Transmission and Reception

- 4.1 Video Test Signals
 - EIA test patterns
 - resolution wedges in the test pattern
 - phase distortion
 - test for ringing in picture
 - ball chart
 - EIA standard colour bar signal
 - window signal
 - sine squared test signals
 - stair step test signals
 - test signals in the vertical blanking interval
 - VITS
 - VIRS
 - communications signals in the vertical blanking

4.2 TV Transmission

- negative modulation
- vestigial sideband
- TV broadcast channels
- standard TV channel
- FM sound signal
- TV transmission standards

4.3 TV Receivers

- functional blocks for the signal
- functional blocks for sync and deflection
- AGC
- DC power requirements
- RF section
- IF section
- video detector
- video amplifier section
- DC component of the video signal
- the 4.5 MHZ sound if section
- raster and sync circuits
- sync separator, sync pulse wave form
- vertical sync integrator
- vertical deflection
- horizontal deflection
- power supplies
- colour TV receiver circuits
- producing the luminance image
- producing the R, G, B signals
- luminance delay lines
- IF gain for colour
- block diagram of the chroma section
- colour control
- colour demodulators
- colour killer circuit
- I and Q demodulators
- R-Y and B-Y demodulators
- colour resolution
- AFPC systems

4.4 Cable Television

- cable frequencies
- coax cable and characteristic impedance
- losses and gains
- cable TV converters
- scrambling and descrambling

4.5 TV Test Instruments

- high voltage measurements
- oscilloscopes for TV servicing
- colour bar generators